Question 1

(a) Evaluate
$$\int_0^3 \frac{dx}{\sqrt{9-x^2}}$$
 (2)

(b) Expand
$$(x+3)^4$$
 (2)

(c) Differentiate
$$x^2 \cos^{-1} 3x$$
 (2)

(d) Find the remainder when the polynomial
$$P(x) = x^3 - 4x + 2$$
 is divided by $x + 4$ (1)

(e) Sketch the curve
$$y = x^3 - 4x$$
 and hence solve $x^3 - 4x \ge 0$

(e) Use the substitution
$$u = \log_e x$$
 to find the exact value of
$$\int_e^{e^2} \frac{1}{x \log_e x} dx$$
 (3)

Question 2 Start a new page

(a) Sketch $y = 3\sin^{-1} 2x$. Your graph must clearly indicate the domain and range.

(2)

(b)

O is the centre of the circle. AB is a tangent to the circle, touching the circle at B.

 $\angle CBA = 65^{\circ}$ Find x, giving reasons

(2)

- (c) The polynomial $P(x) = x^3 2x^2 + kx + 24$ has roots α , β , γ .
- (i) Find the value of $\alpha + \beta + \gamma$

(1)

(ii) Find the value of αβγ

(1)

(iii) It is known that two of the roots are equal in magnitude but opposite in sign.

Find the third root and hence find the value of k

(2)

(d) (i) If $f(x) = e^{x+2}$, find the inverse function $f^{-1}(x)$

(2)

(ii) On the same axes, sketch the graphs of y = f(x) and $y = f^{-1}(x)$

(2)

Question 3 Start a new page

(a) Find the term independent of x in the binomial expansion of
$$(2x - \frac{1}{x^2})^6$$
 (2)

(b) The point A $(2ap,-ap^2)$ is a variable point on the parabola $x^2 = -4ay$. The tangent at A meets the y axis at B. The point C lies on the tangent and divides AB externally in the ratio 3:1

- (i) Show that the equation of the tangent at A is $px + y = ap^2$ (2)
- (ii) Find the coordinates of the points B and C (3)
- (iii) Show that the locus of C is a parabola (1)

(c)
(i) Show that the function $f(x) = xe^x - 1$ has a zero between x = 0 and x = 1 (1)

(ii) Using x = 0.5 as a first approximation, use Newton's Method once to obtain a second approximation to the zero correct to 3 significant figures. (3)

Question 4 Start a new page

(a) Solve
$$\sin 2\theta = \sin \theta$$
 for $0 \le \theta \le 2\pi$

(b) Find the exact value of

$$\int_0^{\pi/2} \sin^2 2x \, dx \tag{3}$$

(c) At any time t, the rate of cooling of the temperature T of a body is given by

$$\frac{dT}{dt} = -k(T - S)$$

where S is the temperature of the surroundings and k is a constant.

(i) Verify that
$$T = S + Ae^{-kt}$$
 is a solution of $\frac{dT}{dt} = -k(T - S)$ where A is a constant (1)

- (ii) A cup of hot tea cooled from 100° C to 70° C in 10 minutes in a room where the temperature was 20° C. Find the values of A and k (2)
- Prove by mathematical induction that $11 \times 2! + 19 \times 3! + 29 \times 4! + ... + (n^2 + 5n + 5)(n + 1)! = (n + 4)(n + 2)! 8$ for n = 1, 2, 3...(4)

Question 5 Start a new page

(a) Find the acute angle between the lines 2x + y = 4 and x - y = 2. Answer to the nearest degree. (2)

The diagram above shows a circle C. The points A, B, D and T lie on C and the point P is an exterior point.

PT is a tangent to C at T. The line AT is parallel to the line BP and point D lies on BP. The lines AD and BT intersect at M.

Copy or trace the diagram onto your page.

(i) Prove that
$$\triangle PTB$$
 is similar to $\triangle BAT$ (3)

(ii) Show that
$$AB = DT$$
 (2)

(b) A particle is moving in a straight line with acceleration given by

$$\frac{d^2x}{dt^2} = 9(x-2)$$

where x is the displacement in metres from an origin O after t seconds. Initially, the particle is 4 metres to the right of O so that x = 4 and has velocity v = -6

(i) Show that
$$v^2 = 9(x-2)^2$$

(ii) Find an expression for v and hence find x as a function of t. (3)

Question 6 Start a new page

(a) The circle $x^2 + y^2 = 100$ is rotated about the y axis from y = 10 to y = 10 - a.

Use $V = \pi \int_{10-a}^{10} (100 - y^2) dy$ to show that the volume, V, is $V = \frac{\pi}{3} a^2 (30 - a)$

(3)

(b)

The volume of water in a hemispherical bowl of radius 10cm is given by $V = \frac{\pi}{3}x^2(30 - x)$ where xcm is the depth of the water at any time t.

The bowl is being filled at a constant rate of $2\pi cm^3$ / min

At what rate is the depth increasing when the depth is 2cm? (3)

(c) A particle moves in a straight line and its position at time t seconds is given by

$$x = \sqrt{3}\sin\frac{t}{2} + \cos\frac{t}{2}$$

(i) Write
$$\sqrt{3}\sin\frac{t}{2} + \cos\frac{t}{2}$$
 in the form $R\sin\left(\frac{t}{2} + \alpha\right)$ where $R > 0$ and $0 \le \alpha \le \frac{\pi}{2}$

- (ii) Hence prove that the particle is moving in simple harmonic motion about x = 0. (2)
- (iii) For $0 < t < 4\pi$, when is the speed of the particle equal to 0.5ms^{-1} .

Question 7 Start a new page

(a) Evaluate
$$\lim_{x \to 0} \frac{\sin 6x}{5x}$$
 (1)

(b) A football is kicked at an angle of α to the horizontal. The position of the ball at time t seconds is given by

$$x = vt \cos \alpha$$

$$y = vt \sin \alpha - \frac{1}{2}gt^2$$

where $g \text{ m/s}^2$ is the acceleration due to gravity and v m/s is the initial velocity of projection. (You are NOT required to derive these.)

(i) Show that the equation of the path of the ball is (2)

$$y = x \tan \alpha - \frac{gx^2}{2v^2} \sec^2 \alpha.$$

(ii) Show that the maximum height h reached is given by (3)

$$h = \frac{v^2 \sin^2 \alpha}{2g}$$

- (iii) Hence show that $y = x \tan \alpha (1 \frac{x \tan \alpha}{4h})$. (2)
- (iv)If $g = 10 \text{ m/s}^2$, $\alpha = 30^\circ$ and the ball just clears the head of a player 1.6m tall and 10m away, calculate the maximum height reached by the ball. (2)
- (c) The real number x is a solution of the equation $x^2 x 1 = 0$. Use the Binomial Theorem to show that the sum S of the series $1 + x + x^2 + ... + x^{2n-1}$ is given by

$$S = \sum_{r=1}^{n} {}^{n}C_{r}x^{r+1} \tag{2}$$

END OF PAPER

Suggested Solutions Extension 1, 2005

Comments

Question 1

(a)
$$\int_{0}^{3} \frac{dx}{\sqrt{9-x^{2}}} = \left[\sin^{-1}\frac{x}{3}\right]_{0}^{3}$$

= $\sin^{-1}1 - \sin^{-1}0$
= $\frac{\pi}{2} - 0$

(b)
$$(x+3)^4 = x^4 + 4x^3 \cdot 3 + 6x^2 \cdot 3^2 + 4x \cdot 3^3 \cdot 3^4 + 13x^3 + 54x^2 + 108x + 81$$

(c)
$$y = x^{2} \cos^{-1} 3x$$

 $y' = uv' + vu'$
 $= x^{2} \cdot \frac{-1}{\sqrt{1 - 9x^{2}}} \cdot 3 + \cos^{-1} 3x \cdot (2x)$
 $= \frac{-3x^{2}}{(1 - 9v^{2})^{2}} + 2x \cos^{-1} 3x$

(d)
$$P(-4) = (-4)^3 - 4(-4) + 2$$

= -64 + 16 + 2
= -46

(e)
$$y = x^{3} - 4x$$

 $= x(x^{2} - 4)$
 $= x(x - 2)(x + 2)$
 $x = 1, y = 1 - 4(1)$
 $= -3$

$$x = e, u = \log_{e} e = 1$$

$$u = \log_{e} x$$

$$\frac{du}{dx} = \frac{1}{x}$$

$$\int_{e}^{e^{2}} \frac{1}{x \log_{e} x} dx = \int_{1}^{2} \frac{1}{u} du$$

$$= [\ln u]^{2},$$

$$= \ln 2 - \ln 1$$

Extension Mathematics Trial Examination 2005

Page

-15 2× 51 -1 <x 5-1 LDBC = 90° (angle in a semi circle LBDC=650 (alternate & theorem) 火 =250 (c) P(x)=x3-2x2+ kx+24 a=1, b=-2, c=k, d=24 1) x+B+8 = - = = 2 = -24 iii) hat B = - oc x-x+8=2 x = 2 P(2) = 23-2(2)2+ k(2)+24)=0 x = e 3+2 In x = y+2 y = -2 + lnx f-1(x)=-2+lnx (ii to be shown.

(a)
$$y = 3 \sin^{-1} 2x$$

 $-1 \le 2x \le 1$
 $-\frac{1}{2} \le x \le \frac{1}{2}$

$$\times +90+65 = 180^{\circ}$$
 (angle sum of a \triangle)
 $\times +25^{\circ}$

Suggested Solutions Extension 1, 2005

iii) hat
$$\beta = -\infty$$

For full marks, intercepts

Comments

Suggested Solutions Extension 1, 2005	Comments
$\frac{\text{Question 3}}{T_{r}} = \frac{6C_{r}(2x)^{6-r}(-x^{-2})^{r}}{6C_{r-1}(2x)^{6-(r-1)}(-x^{-2})^{r-1}}$	
$0 = \frac{6 - r - 2r}{7 - r - 2r + 2}$	
0 = 6-3r	
$C_{2} = (2x)^{4} \left(\frac{1}{x^{2}}\right)^{2}$ $= 15.16x^{4} \cdot \frac{1}{x^{4}}$	
= 240 \	
$y = \frac{x^2}{-4a}$	
$y' = \frac{2x}{-4a}$ $= \frac{x}{-3a}$	
at x=2ap, $y' = \frac{2ap}{-2a}$	
$y - y_1 = m(x - x_1)$ $y + ap^2 = -p(x - 2ap)$ $y + ap^2 = -px + 2ap^2$ $px + y = ap^2$	
11) at B, $x=0$, $y=ap^2$: $B(0,ap^2)$ (1) at B, $x=0$, x_1 y_1 y_2 y_3 y_4 y_5 y_5 y_6 y	
$C = \left(\frac{m \times z + n \times 1}{m + n}, \frac{m \cdot y_z + n \cdot y_1}{m + n}\right)$	
$= \left(\frac{3\times0-1\times2ap}{3-1}, \frac{3\times ap^2-1ap^2}{3-1}\right)$ $= \left(-ap, 2ap^2\right)$	
iii) $x = -ap$ $y = 2a \left(\frac{x}{-a}\right)^2$ $P = \frac{x}{-a}$ $y = 2a \frac{x^2}{-a}$ $x^2 = \frac{1}{2} ay \text{ which is a parabola}$	
c) i) $f(0) = 0 - 1 = -1$ f(1) = e - 1 = 1.7 Since $f(0)$ and $f(1)$ have different signs, $f(x)$ has a zero between $x = 0 = x = 1$	
(i) $f'(\dot{x}) = e^{\dot{x}} + xe^{\dot{x}}$ $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 0.5 - \frac{0.5e^{0.5} - 1}{e^{0.5} + 0.5e^{0.5}} = 0.571$ Extension Mathematics Trial Examination 2005 Page of	
Cxtension Mathematics Trial Examination 2005 Page of	

Suggested Solutions Extension 1, 2005	Comments
Question 4 a) $\sin 2\theta = \sin \theta$ for $0 \le \theta \le 2\pi$ $2\sin \theta \cos \theta - \sin \theta \ge 0$ $\sin \theta (2\cos \theta - 1) = 0$ $\sin \theta = 0$ $\cos \theta = \frac{1}{2}$ $\theta = 0, \pi, 2\pi, \theta = \frac{\pi}{3}, \frac{5\pi}{3}$	
b) $\int_{0}^{\frac{\pi}{12}} \sin^{2} 2x dx = \frac{1}{2} \int_{0}^{\frac{\pi}{12}} -\cos 4x dx^{2} \sin^{2} x = \frac{1}{2} (1-\cos 2x)$ $= \frac{1}{2} \left(\frac{1}{12} - \frac{1}{4} \sin 4x \right) - \left(0 - \frac{1}{4} \sin 0 \right)$ $= \frac{1}{2} \left(\frac{\pi}{12} - \frac{1}{4} \cdot \frac{\sqrt{3}}{2} - 0 \right)$ $= \frac{\pi}{24} - \frac{\sqrt{3}}{16}$	
c)i) $T = S + Ae^{-kt}$ $dT = -k \cdot Ae^{-kt}$ $= -k \cdot (T-S)$ ii) $A = 80$, $S = 20$, $T = 70$ $t = 10$ $100 = 20 + Ae^{\circ}$ 70 = 20 + 800e $50 = 80e^{-10k}$ $\frac{S}{8} = e^{-10k}$ $\frac{Ln(\frac{S}{8})}{-10} = k$ K = 0.04740063	
Extension Mathematics Trial Examination 2005 Page of	

Suggested Solutions Extension 1, 2005	Comments
LHS = (k++)(k+2)!-8+(k2+2k+1+5k+10)(k+2)! = (k+4)(k+2)!+(k2+7k+11)(k+2)!-8 =(k+2)![(k+4)+(k2+7k+11)]-8 =(k+2)!(k2+8k+15)-8 =(k+2)!(k+5)(k+3)-8 =(k+2)!(k+5)(k+3)-8 =(k+3)!(k+5)-8 =RHS. Since the statement is true for n=1, it is true for n=1+1=2 = therefore true for all integers n>1	
QUESTION 5 a) $2x+y=4$ $y=-2x+4$ $y=-2x+4$ $ x-y =2$	
II) In A ABT, DADT AT is common <abt (aas)="" (cuternale="" (orgles="" 2005="" <'s="" <abbt="<A+B" <abd="<B(O)" <abt="ABT" <adt="" <tad="<TBD" =="" abt="" b)="" bdorce="" cre="" examination="" extension="" mathematics="" of<="" on="" ore="" page="" scare="" td="" trial=""><td>ueil) ueil) SilBT)</td></abt>	ueil) ueil) SilBT)

	xtension 1, 2005		Comments
Suggested Solutions E Question 5 (continued) 1) $\frac{d^2x}{dt^2} = 9(x-2)$ $\frac{1}{2}v^2 = 9(\frac{x^2}{2}-2x)$ $v=-6$, $x=4$, $\frac{1}{2}(-6)^2 = 9(\frac{16}{2}-6)$ $= 18$ $\frac{1}{2}v^2 = 9(\frac{x^2}{2}-2x)$ $v^2 = 18(\frac{x^2}{2}-2x)$ $v^2 = 18(\frac{x^2}{2}-2x)$ $v=-3(x-2)$ but $v<0$ when $x=4$ $v=-3(x-2)$ $\frac{dx}{dt} = -3(x-2)$ $\frac{dx}{dt} = -3(x-2)$ $t=-3(x-2)$	+ 18 + 36 + 36 + 20 + 4 + C + C + C + C + C + C + C + C + C + C	Contract of the contract of th	Comments
Extension Mathematics Trial Examination 2	2005	Page of	<u> </u>

Suggested Solutions Extension 1, 2005 $ \frac{Question 6}{a} V = \pi \int_{10-a}^{10} (100 - 3^{2}) dy $ $ = \pi \left[(1000 - \frac{1000}{3}) - (100(10-a) - \frac{(10-a)^{3}}{3}) \right] $ $ = \pi \left[(1000 - \frac{1000}{3}) - (1000 - 1000a - \frac{(1000 - 3000a + 30a^{2}a^{3})}{3}) \right] $ $ = \pi \left[-\frac{1000}{3} + 1000a + \frac{1000}{3} - 1000a + 100a^{2} - \frac{a^{3}}{3} \right] $ $ = \pi \left[10a^{2} - \frac{a^{3}}{3} \right] $ $ = \frac{\pi}{3}a^{2}(30 - a) $ b) Find $\frac{dx}{dx}$ when $x = 2$ $\frac{dV}{dx} = 2\pi$ $ V = \frac{\pi}{3}x^{2}(30 - x) $ $ = \pi (10x^{2} - \frac{\pi}{3}x^{3}) $ $ = \pi (10x^{2}$	mments
a) $V = \pi \int_{10-\infty}^{10} (100 - y^2) dy$ $= \pi \left[(1000 - \frac{1000}{3}) - (100(10-a) - \frac{(10-a)^3}{3}) \right]$ $= \pi \left[(1000 - \frac{1000}{3}) - (1000 - 1000 - \frac{(100 - 3000 + 300^{\frac{3}{2}})^{\frac{3}{2}}}{3} \right]$ $= \pi \left[-\frac{1000}{3} + 1000 + \frac{1000}{3} - 1000 + 100^{\frac{3}{2}} - \frac{a^3}{3} \right]$ $= \pi \left[100^{\frac{3}{2}} - \frac{a^3}{3} \right]$ $= \pi \left[100^{\frac{3}{2}} - \frac{a^3}{3} \right]$ $= \frac{\pi}{3}a^2(30 - a)$ b) Find $\frac{dx}{dt}$ when $x = 2$ $\frac{dV}{dt} = 2\pi$ $V = \frac{\pi}{3}x^2(30 - x)$ $= \frac{\pi}$	
$= \pi \left[100 - \frac{\sqrt{3}}{3} \right]_{10-a}^{10}$ $= \pi \left[(1000 - \frac{1000}{3}) - (100(10-a) - \frac{(10-a)^{3}}{3}) \right]$ $= \pi \left[1000 - \frac{1000}{3} - (1000 - 1000a - \frac{(000 - 300a + 30a^{2}a^{3})}{3}) \right]$ $= \pi \left[-\frac{1000}{3} + 100a + \frac{1000}{3} - 100a + 10a^{2} - \frac{a^{3}}{3} \right]$ $= \pi \left[10a^{2} - \frac{a^{3}}{3} \right]$ $= \frac{\pi}{3}a^{2}(30 - a)$ b) Find $\frac{dx}{dt}$ when $x = a$ $\frac{dV}{dt} = 2\pi$ $V = \frac{\pi}{3}x^{2}(30 - x)$ $= \frac{\pi}{3}x^{2}(30 -$	
$= \pi \left[(1000 - \frac{1000}{3}) - (100(10-a) - \frac{(10-a)^{3}}{3}) \right]$ $= \pi \left[1000 - \frac{1000}{3} - (1000 - 100a - \frac{(1000 - 300a + 30a^{2}a^{3})}{3}) \right]$ $= \pi \left[-\frac{1000}{3} + 100a + \frac{1000}{3} - 100a + 10a^{2} - \frac{a^{3}}{3} \right]$ $= \pi \left[10a^{2} - \frac{a^{3}}{3} \right]$ $= \frac{\pi}{3}a^{2}(30 - a)$ b) Find $\frac{dx}{dt}$ when $x = a$ $\frac{dV}{dt} = 2\pi$ $V = \frac{\pi}{3}x^{2}(30 - x)$ $= \frac{\pi}{3}x^{2}(30 - x)$ $= \frac{\pi}{3}x^{2}(30 - x)$ $= \pi(10x^{2} - \frac{\pi}{3}x^{3})$ $= \pi(10x^{2} - \frac{\pi}{3}x^{3})$ $= \pi(10x^{2} - \frac{\pi}{3}x^{3})$ $dV = 20\pi x - \pi x^{2} At x = 2, dV = 40\pi - 4\pi = 36\pi$ $\frac{dx}{dt} = \frac{dx}{dV} \times \frac{dV}{dt}$ $= \frac{1}{36\pi} \times 2\pi$ $= \frac{1}{18} \text{ cm/min}$ $c)i) R = \sqrt{(15)^{2} + (1)^{2}} tan $	
$= \pi \left[1000 - \frac{1000}{3} - \left(1000 - 1000 - \frac{1000 - 3000 + 3000^{2}}{3} \right) \right)$ $= \pi \left[-\frac{1000}{3} + 1000 + \frac{1000}{3} - 1000 + 100^{2} - \frac{a^{3}}{3} \right]$ $= \pi \left[10a^{2} - \frac{a^{3}}{3} \right]$ $= \frac{\pi}{3}a^{2} \left(30 - a \right)$ b) Find $\frac{dx}{dt}$ when $x = 2$ $\frac{dV}{dt} = 2\pi$ $V = \frac{\pi}{3}x^{2} \cdot 30 - \frac{\pi}{3}x^{3}$ $= \pi 10x^{2} - \frac{\pi}{3}x^{3}$ $= \pi 10x^{2} - \frac{\pi}{3}x^{3}$ $\frac{dV}{dx} = 20\pi x - \pi x^{2} + At x = 2, \frac{dV}{dx} = 40\pi - 4\pi = 36\pi$ $\frac{dx}{dt} = \frac{dx}{dV} \times \frac{dV}{dt}$ $= \frac{1}{36\pi} \times 2\pi$ $= \frac{1}{18} \text{ cm/min}$ c) $i) R = \sqrt{(15)^{2} + (1)^{2}}$ $ton x = \frac{\pi}{6}$	
$= \pi \left[-\frac{1000}{3} + 1000 + \frac{1000}{3} - 1000 + 100^{2} - \frac{a^{3}}{3} \right]$ $= \pi \left[100^{2} - \frac{a^{3}}{3} \right]$ $= \frac{\pi}{3}a^{2}(30 - \alpha)$ $V = \frac{\pi}{3}x^{2}(30 - x)$ $= \frac{\pi}{3$	
$= \pi \left[10a^{2} - \frac{a^{3}}{3} \right]$ $= \frac{\pi}{3}a^{2}(30 - \alpha)$ $V = \frac{\pi}{3}x^{2}(30 - x)$ $= \frac{\pi}{3}x^{2}(30 - x)$ $= \frac{\pi}{3}x^{2}(30 - x)$ $= \frac{\pi}{3}x^{2} \cdot 30 - \frac{\pi}{3}x^{3}$ $= \pi 10x^{2} - \frac{\pi}{3}x^{3}$ $= \pi 10x^{2} - \frac{\pi}{3}x^{3}$ $= 20\pi x - \pi x^{2} \mid At x = 2, \ dv = 40\pi - 4\pi = 36\pi$ $dx = \frac{dx}{dx} \times \frac{dV}{dt}$ $= \frac{1}{36\pi} \times 2\pi$ $= \frac{1}{18} \text{ cm/min}$ $c)i) R = \sqrt{(5)^{2} + (1)^{2}} \qquad tan x = \frac{\pi}{6}$ $x = \frac{\pi}{6}$	
$= \frac{\pi}{3}a^{2}(30 - \alpha)$ b) Find $\frac{dx}{dt}$ when $x = 2$ $\frac{dV}{dt} = 2\pi$ $V = \frac{\pi}{3}x^{2}(30 - x)$ $= \frac{\pi}{3}x^{2} \cdot 30 - \frac{\pi}{3}x^{3}$ $= \pi 10x^{2} - \frac{\pi}{3}x^{3}$ $= \pi 10x^{2} - \frac{\pi}{3}x^{3}$ $\frac{dV}{dx} = 20\pi x - \pi x^{2}$ At $x = 2$, $\frac{dV}{dx} = 40\pi - 4\pi = 36\pi$ $\frac{dx}{dt} = \frac{dx}{dV} \times \frac{dV}{dt}$ $= \frac{1}{36\pi} \times 2\pi$ $= \frac{1}{18} \text{ cm/min}$ c) i) $R = \sqrt{(13)^{2} + (1)^{2}}$ tan $\alpha = \frac{1}{\sqrt{3}}$ $= 2$ $\alpha = \frac{\pi}{6}$	
b) Find $\frac{dx}{dt}$ when $x = 2$ $\frac{dV}{dt} = 2\pi$ $V = \frac{\pi}{3} x^{2} (30 - x)$ $= \frac{\pi}{3} x^{2} . 30 - \frac{\pi}{3} x^{3}$ $= \pi 10x^{2} - \frac{\pi}{3} x^{3}$ $\frac{dV}{dx} = 20\pi x - \pi x^{2}$ $\frac{dx}{dt} = \frac{dx}{dV} \times \frac{dV}{dt}$ $= \frac{1}{36\pi} x^{2\pi}$ $= \frac{1}{18} \text{ cm/min}$ $c)i) R = \sqrt{(15)^{2} + (1)^{2}} \qquad tom x = \frac{1}{13}$ $= 2$ $x = \frac{\pi}{6}$	
$V = \frac{\pi}{3} \times^{2} (30 - x)$ $= \frac{\pi}{3} \times^{2} (30 - x)$ $= \frac{\pi}{3} \times^{2} (30 - x)$ $= \pi \times^{2$	
$= \frac{\pi}{3}x^{2} \cdot 30 - \frac{\pi}{3}x^{3}$ $= \pi 10x^{2} - \frac{\pi}{3}x^{3}$ $dV = 20\pi x - \pi x^{2} \mid At x = 2, \ dx = 40\pi - 4\pi = 36\pi$ $\frac{dx}{dt} = \frac{dx}{dV} \times \frac{dV}{dt}$ $= \frac{1}{36\pi}x^{2}\pi$ $= \frac{1}{18} \text{ cm/min}$ $c)i) R = \sqrt{(15)^{2} + (1)^{2}} \qquad tom \ d = \frac{1}{\sqrt{3}}$ $= 2 \qquad \alpha = \frac{\pi}{6}$	
$= \pi 10x^{2} - \frac{\pi}{3}x^{3}$ $dV = 20\pi x - \pi x^{2}$ $dx = \frac{dx}{dt} \times \frac{dV}{dt}$ $= \frac{1}{36\pi} \times 2\pi$ $= \frac{1}{18} \text{ cm/min}$ $c)i) R = \sqrt{(13)^{2} + (1)^{2}} \qquad tom \ d = \frac{1}{\sqrt{3}}$ $= 2$ $\alpha = \frac{\pi}{6}$	
$\frac{dV}{dx} = 20\pi \times -\pi \times^{2} At \times = 2, \vec{d}V = 40\pi - 4\pi = 36\pi$ $\frac{dX}{dt} = \frac{dX}{dV} \times \frac{dV}{dt}$ $= \frac{1}{36\pi} \times 2\pi$ $= \frac{1}{18} \text{ cm/min}$ $c)i) R = \sqrt{(3)^{2} + (1)^{2}} \qquad tom \ d = \frac{1}{\sqrt{3}}$ $= 2 \qquad \alpha = \frac{\pi}{6}$	
$\frac{dx}{dt} = \frac{dx}{dV} \times \frac{dV}{dt}$ $= \frac{1}{36\pi} \times 2\pi$ $= \frac{1}{18} \text{ cm/min}$ $c)i) R = \sqrt{(3)^2 + (1)^2} \qquad tom \ \alpha = \frac{1}{\sqrt{3}}$ $= 2 \qquad \alpha = \frac{\pi}{6}$	
$= \frac{1}{36\pi} \times 2\pi$ $= \frac{1}{18} \text{ cm/min}$ $c)i) R = \sqrt{(13)^2 + (1)^2} \qquad tom \ d = \frac{1}{\sqrt{3}}$ $= 2 \qquad \alpha = \frac{\pi}{6}$	
$= \frac{1}{18} \text{ cm/min}$ c)i) $R = \sqrt{(15)^2 + (1)^2}$ tan $\alpha = \frac{1}{\sqrt{3}}$ $= 2 \qquad \alpha = \frac{\pi}{6}$	
c)i) $R = \sqrt{(5)^2 + (1)^2}$ tan $d = \frac{1}{53}$ = 2 $d = \frac{\pi}{6}$	
$=2$ $\alpha=\frac{\pi}{6}$	
x = 7	
[sin = + cos = = 2 am (= + T)	
ii) z=z=in (\$\frac{\xi}{2} + \frac{\ta}{6})	
$V = \frac{1}{2} \cdot 2505 \left(\frac{\pi}{2} + \frac{\pi}{6} \right)$	
= cos(=+7)	
a = -1 sin (=+===================================	
= -4 x 2 sin (= + =)	
=-4x which is in SHM ii) 0.5= cos(=+3)	
三十五二五、三五、三五、三五、三五、三五、三五、三五、三五、三五、三五、三五、三五、三五	
$t = \frac{\pi}{3}, \frac{3\pi}{3}$ Extension Mathematics Trial Examination 2005 Page of	

Suggested Solutions Extension 1, 2005	Comments
Question 7 a) $\lim_{x\to 0} \frac{\sin 6x}{5x} = \lim_{x\to 0} \frac{\sin 6x}{6x} \times \frac{6}{5}$ $= 1 \times \frac{6}{5}$ $= \frac{6}{5}$	
b) 1) $x = vt \cos x$ $\therefore t = \frac{x}{v \cos x}$ Sub into $y = vt \sin x - \frac{1}{2}gt^2$ $y = v(\frac{x}{v \cos x})^{\sin x} - \frac{1}{2}g(\frac{x}{v \cos x})^2$ $= x \tan x - \frac{qx^2}{2v^2 \cos^2 x}$ $= x \tan x - \frac{qx^2}{2v^2} \sec^2 x$	
11) Ball reaches maximum beight when $\dot{y}=0$ $0 = V \sin \alpha - gt$ $t = \frac{V \sin \alpha}{g}$ Substitute into $y = Vt \sin \alpha - \frac{1}{2}gt^2$ $y = V(\frac{V \sin \alpha}{g})\sin \alpha - \frac{1}{2}g(\frac{V^2 \sin^2 \alpha}{g^2})$ $= V^2 \sin^2 \alpha - \frac{1}{2}\frac{V^2 \sin^2 \alpha}{g^2}$	
$= \frac{v^2 \sin^2 \alpha}{2g}$ $= \frac{v^2 \sin^2 \alpha}{2g}$ $\therefore y = x + \tan \alpha - \left(\frac{v^2 \sin^2 \alpha}{2h}\right) x^2 \sec^2 \alpha$ $= x + \tan \alpha - y^2 \sin^2 \alpha x^2 \sec^2 \alpha$ $= 2h \cdot 2y^2$	
= x tand - x3in2x cos2x.4h = x tanx - x2 tan2x th = x tanx (1 - x tanx)	of

